3.11.40 \(\int \frac {1}{x^2 \sqrt [4]{2-3 x^2} (4-3 x^2)} \, dx\) [1040]

Optimal. Leaf size=166 \[ -\frac {\left (2-3 x^2\right )^{3/4}}{8 x}+\frac {\sqrt {3} \tan ^{-1}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}+\frac {\sqrt {3} \tanh ^{-1}\left (\frac {2^{3/4}+\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}-\frac {\sqrt {3} E\left (\left .\frac {1}{2} \sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{4\ 2^{3/4}} \]

[Out]

-1/8*(-3*x^2+2)^(3/4)/x+1/16*2^(1/4)*arctan(1/3*(2^(3/4)-2^(1/4)*(-3*x^2+2)^(1/2))/x/(-3*x^2+2)^(1/4)*3^(1/2))
*3^(1/2)+1/16*2^(1/4)*arctanh(1/3*(2^(3/4)+2^(1/4)*(-3*x^2+2)^(1/2))/x/(-3*x^2+2)^(1/4)*3^(1/2))*3^(1/2)-1/8*2
^(1/4)*(cos(1/2*arcsin(1/2*x*6^(1/2)))^2)^(1/2)/cos(1/2*arcsin(1/2*x*6^(1/2)))*EllipticE(sin(1/2*arcsin(1/2*x*
6^(1/2))),2^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {451, 331, 234, 406} \begin {gather*} -\frac {\sqrt {3} E\left (\left .\frac {1}{2} \text {ArcSin}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{4\ 2^{3/4}}+\frac {\sqrt {3} \text {ArcTan}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}-\frac {\left (2-3 x^2\right )^{3/4}}{8 x}+\frac {\sqrt {3} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt {2-3 x^2}+2^{3/4}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

-1/8*(2 - 3*x^2)^(3/4)/x + (Sqrt[3]*ArcTan[(2^(3/4) - 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))])
/(8*2^(3/4)) + (Sqrt[3]*ArcTanh[(2^(3/4) + 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))])/(8*2^(3/4)
) - (Sqrt[3]*EllipticE[ArcSin[Sqrt[3/2]*x]/2, 2])/(4*2^(3/4))

Rule 234

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2/(a^(1/4)*Rt[-b/a, 2]))*EllipticE[(1/2)*ArcSin[Rt[-b/a,
2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 406

Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b^2/a, 4]}, Simp[(-b/(2*a
*d*q))*ArcTan[(b + q^2*Sqrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x] - Simp[(b/(2*a*d*q))*ArcTanh[(b - q^2*S
qrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a
]

Rule 451

Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegrand[x^m/((a +
b*x^2)^(1/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a]
|| IntegerQ[m/2])

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt [4]{2-3 x^2} \left (4-3 x^2\right )} \, dx &=\int \left (\frac {1}{4 x^2 \sqrt [4]{2-3 x^2}}-\frac {3}{4 \sqrt [4]{2-3 x^2} \left (-4+3 x^2\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {1}{x^2 \sqrt [4]{2-3 x^2}} \, dx-\frac {3}{4} \int \frac {1}{\sqrt [4]{2-3 x^2} \left (-4+3 x^2\right )} \, dx\\ &=-\frac {\left (2-3 x^2\right )^{3/4}}{8 x}+\frac {\sqrt {3} \tan ^{-1}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}+\frac {\sqrt {3} \tanh ^{-1}\left (\frac {2^{3/4}+\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}-\frac {3}{16} \int \frac {1}{\sqrt [4]{2-3 x^2}} \, dx\\ &=-\frac {\left (2-3 x^2\right )^{3/4}}{8 x}+\frac {\sqrt {3} \tan ^{-1}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}+\frac {\sqrt {3} \tanh ^{-1}\left (\frac {2^{3/4}+\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{8\ 2^{3/4}}-\frac {\sqrt {3} E\left (\left .\frac {1}{2} \sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{4\ 2^{3/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 20.05, size = 56, normalized size = 0.34 \begin {gather*} -\frac {\left (2-3 x^2\right )^{3/4}}{8 x}+\frac {3 x^3 F_1\left (\frac {3}{2};\frac {1}{4},1;\frac {5}{2};\frac {3 x^2}{2},\frac {3 x^2}{4}\right )}{64 \sqrt [4]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

-1/8*(2 - 3*x^2)^(3/4)/x + (3*x^3*AppellF1[3/2, 1/4, 1, 5/2, (3*x^2)/2, (3*x^2)/4])/(64*2^(1/4))

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {1}{x^{2} \left (-3 x^{2}+2\right )^{\frac {1}{4}} \left (-3 x^{2}+4\right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

[Out]

int(1/x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-integrate(1/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)*x^2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

integral((-3*x^2 + 2)^(3/4)/(9*x^6 - 18*x^4 + 8*x^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{3 x^{4} \sqrt [4]{2 - 3 x^{2}} - 4 x^{2} \sqrt [4]{2 - 3 x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-3*x**2+2)**(1/4)/(-3*x**2+4),x)

[Out]

-Integral(1/(3*x**4*(2 - 3*x**2)**(1/4) - 4*x**2*(2 - 3*x**2)**(1/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

integrate(-1/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)*x^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {1}{x^2\,{\left (2-3\,x^2\right )}^{1/4}\,\left (3\,x^2-4\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-1/(x^2*(2 - 3*x^2)^(1/4)*(3*x^2 - 4)),x)

[Out]

-int(1/(x^2*(2 - 3*x^2)^(1/4)*(3*x^2 - 4)), x)

________________________________________________________________________________________